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Anscombe dataset No. 5: Simpson’s paradox
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A new fifth dataset has been created, using the very same independent variable as three out of the
four original datasets, and is in complete concordance with the summary statistics of the original
Anscombe’s quartet. On this occasion the new dataset serves as an illustration of the so-called
Simpson’s paradox.

INTRODUCTION

It was little over 50 years ago that Francis J. Anscombe published a paper [1] in which four synthetic datasets were
created to serve an illustration of the importance of visualizing ones data as an essential precursor of performing a
good analysis. At the time the motivation for his work was to encourage the use of the emerging graphical capabilities
of computers, but his message remains just as valid today. These four datasets, reproduced in Fig. 1 for completeness,
have become to be popularly known as Anscombe’s quartet:

• dataset y1: the points have a distribution such that a straight line could be considered to be a reasonable model
to fit (ŷ = 0.5x+ 3).

• dataset y2: the points form a smooth curve (ŷ = −0.127x2 + 2.78x− 6 with effectively zero residuals) to which
a straight line will underfit.

• dataset y3: has an outlier point. If we were to drop the single datapoint corresponding to x = 13 we obtain the
fit ŷ = 0.345x+ 4 with effectively zero residuals.

• dataset y4: high-leverage point; here a single outlier point dominates the fit. Dropping the datapoint corre-
sponding to x = 19 results in a dataset having var(x) = 0.

On the other hand in 1951 Edward Simpson [2] published a paper concerning the creation of 2 × 2 contingency
tables when there exists a confounding variable, or in machine learning parlance where there is a missing categorical
feature. His paper has since become associated with what is known as Simpson’s paradox [3, 4]; when said categorical
feature is taken into account the interpretation of the inference can alter radically, a manifestation being for example a
reversal in sign of the regression coefficient(s) β1. It is worth mentioning that said regression reversal was not actually
delineated in Simpson’s original paper [5] but rather was described by Pearson, Lee and Bramley-Moore [6] in a paper
from 1899, wherein providing an example of a spurious correlation derived from a heterogeneous mixture of male and
female skulls that were sampled from the Catacombs of Paris; said correlation disappearing for the individual groups.

FIG. 1: The Anscombe quartet: y1 (upper left), y2 (upper right), y3 (lower left) and y4 (lower right).
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TABLE I: The Anscombe quintet, organized as per the deliberate random row order of the original
table. The column y5 (shaded) represents the contribution of this work. A csv file of this dataset can

be downloaded from doi:10.5281/zenodo.15209087

x1,2,3,5 y1 y2 y3 y5 x4 y4
10.0 8.04 9.14 7.46 9.82 8.0 6.58
8.0 6.95 8.14 6.77 5.56 8.0 5.76

13.0 7.58 8.74 12.74 9.51 8.0 7.71
9.0 8.81 8.77 7.11 5.45 8.0 8.84

11.0 8.33 9.26 7.81 9.72 8.0 8.47
14.0 9.96 8.10 8.84 9.40 8.0 7.04
6.0 7.24 6.13 6.08 5.80 8.0 5.25
4.0 4.26 3.10 5.39 6.03 19.0 12.50

12.0 10.84 9.13 8.15 9.61 8.0 5.56
7.0 4.82 7.26 6.42 5.68 8.0 7.91
5.0 5.68 4.74 5.73 5.92 8.0 6.89

In this work we deliberately set out to create a new dataset that is both illustrative of Simpson’s paradox, whilst
at the same time being in keeping with Anscombe’s original independent variable values (i.e. x ∈ {4, . . . , 14}) and
summary statistics.

METHODOLOGY

In 2007 Chatterjee and Firat [7] detailed a procedure based on a genetic algorithm for producing datasets that
have dissimilar aspects yet similar summary statistics. In 2009 Haslett and Govindaraju [8] showed how regression
fits can be ‘cloned’ into new datasets. In 2017 Matejka and Fitzmaurice [9] used simulated annealing to gradually
morph between a starting configuration towards a desired final configuration, maintaining the statistics quasi-constant
(i.e. to within two decimal places) along the path. They also provided a visually stunning demonstration of their
technique using the Datasaurus dataset [10] composed of 182 points and, by way of 200,000 iterations, led to the
creation of the ‘Datasaurus dozen’, the modern incarnation of the Anscombe quartet. They too, as in this work,
created a Simpson’s paradox dataset but did not adopt the context of the original Anscombe data. In a more recent
work La Haye and Zizler [11] elegantly show how linear algebra can be used to create Anscombe like datasets, along
the way demonstrating how Anscombe may have actually created his original datasets.

However, in this study we adopt a distinct approach to those in the aforementioned works. To create dataset No. 5
it was decided for aesthetic reasons that the clusters would consist of straight lines. Two clusters were created, with
six points (x ∈ {4, . . . , 9}) being assigned to the left hand side (LHS) cluster, and the remaining five points to the
right hand side (RHS) cluster. These choices led to a three parameter search space; the regression coefficient (β1)
and the the y value of the centroid of the LHS line, and β1 of the RHS line, since the location of the y value of the
centroid of the RHS line is dictated by the condition that the overall ȳ = 7.5. The author then proceeded to perform
a brute-force computational grid search of this parameter space, finally selecting the three parameters that led to the
closest fit to the Anscombe dataset statistics. The search grid focused on values of the cluster regression coefficients
that were negative so as to align with the essential message of Simpson’s paradox.

RESULTS

The data points for this new dataset are provided in the y5 column of Table I and are shown graphically in Fig.
2. It is worth mentioning that a viable dataset was also found by assigning five points to the LHS cluster and the
remaining six to the RHS cluster. However, no suitable solution was found when assigning either four or seven of the
points to the LHS cluster. The summary statistics that are calculated are as follows: the mean and the standard
deviation (using Bessel’s correction) of both x and y. A linear regression is fitted to the datasets where ŷ = β1x+ β0

and both β1 and β0 are presented. The coefficient of determination, R2, is given by

R2 = 1− RSS

TSS
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FIG. 2: Plot of the y5 datapoints corresponding to Simpson’s paradox. We can see that the regression
coefficients (β1) for the LHS cluster (green) and the RHS cluster (orange) both have a negative slope,

whereas the overall dataset regression coefficient is positive.

TABLE II: A selection of statistics of each of the five datasets, rounded to the same precision as the
original publication. The standard deviations are calculated using Bessel’s correction.

statistic y1 y2 y3 y5 y4
x̄ 9.0 9.0 9.0 9.0 9.0
ȳ 7.5 7.5 7.5 7.5 7.5
σ(x) 3.317 3.317 3.317 3.317 3.317
σ(y) 2.032 2.032 2.030 2.031 2.031
β1 0.5 0.5 0.5 0.5 0.5
β0 3.0 3.0 3.0 3.0 3.0∑

(x− x̄)2 110.0 110.0 110.0 110.0 110.0
RSS 13.76 13.78 13.76 13.76 13.74
R2 0.667 0.666 0.666 0.666 0.667
regression sum of squares 27.51 27.50 27.47 27.48 27.49
standard error of β1 0.118 0.118 0.118 0.118 0.118
Pearson rxy 0.816 0.816 0.816 0.816 0.817

where RSS is the sum of squared residuals given by
∑

ε2i where εi = yi − ŷi, and TSS is the total sum of squares
given by

∑
(y − ȳ)2. The regression sum of squares is given by

∑
(ŷi − ȳ)2. The estimated standard error of β1 is

given by

SEβ1 =

√
RSS/(n− 2)∑

(x− x̄)2

where n is the number of datapoints, in this case 11. The final statistic we present is the Pearson correlation coefficient,
rxy, which measures linear correlation between x and y and is given by

rxy =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
√∑

(yi − ȳ)2

In Table II we can see that the results for the new y5 dataset are within the bounds of the results of the other four
datasets.

This work is dedicated to Maureen J. Ellis.
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