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The fluid—solid equilibrium for a charged hard sphere model revisited
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The global phase diagram of a system of charged hard spheres, composed of positive and negative
ions of the same size, is obtained by means of computer simulations. Thermodynamic integration
and Einstein crystal calculations are used to determine the free energies of the different possible
solid structures. In this way, the fluid—solid and solid—solid phase transitions are located. Gibbs—
Duhem integration is used to trace the full coexistence curves between the different phases involved.
Three different solid structures are found to be stable for the model considered; namely, a cesium
chloride structure(CsCl), a substitutionally disordered close packed structure which is faced
centered cubi¢fcc), and a tetragonal ordered structure with a fcc arrangement of atoms if the charge
of the ions is not considered. At high temperatures, freezing leads to the substitutionally disordered
close packed structure. This solid structure undergoes an order—disorder transition at low
temperatures transforming into the tetragonal solid. At low temperatures freezing leads to the cesium
chloride structurgCsCl) which undergoes a phase transition to the tetragonal structure at high
pressures. The tetragonal solid is the stable solid phase at low temperatures and high densities. In a
narrow range of temperatures direct coexistence between the fluid and the tetragonal solid is
observed. Three triple points are found for the model considered. The usual vapor—liquid—CsCl
solid triple point occurs af* =0.0225. In addition, a fluid-fcc disordered-tetragonal triple point is
located atT* =0.245 and, finally, a fluid-CsCl-tetragonal triple point appear$’at 0.234. The

results presented here can be used to test the performance of the different theoretical treatments of
freezing available in the literature. @003 American Institute of Physics.

[DOI: 10.1063/1.1576374

I. INTRODUCTION Vorontsov-Vel'yaminov and Chasovskikh by means of
Monte Carlo computer simulatiorié.Stell et al.® by means
The structure of molecular fluids at high densities isgf theory, also predicted the existence of a vapor—liquid
dominated by repulsive forcés.Hence, the study of models equilibrium. Recent computer simulatiné! have now es-
having only repulsive interactions, for instance hard bodiesiaplished definitively the existence of the vapor—liquid equi-
is of great importance. In the case of ionic systems the struqiprium for the restricted primitive model and the location of
ture is determined simultaneously by short range repulsivene critical point. Also, very recently results of the liquid—
forces and by long range coulombic interactions. For this,apor surface tension of the RPM have been publithed
reason, the study of a hard ionic system may be of greajhich show excellent agreement with experimental results
value in improving our understanding of ionic systems infor jonic salts. The nature of the critical point of ionic fluids
general. This paper is devoted to one of the simplest hargzs also been the focus of a number of studied® The
ionic models; a charged hard sphere system usually knowgy,dy of the fluid—solid equilibrium of the model has, how-
as the restricted primitive mode€RPM). The RPM has eyer, received comparatively less attention. In 1968, Still-
played a fundamental role in the study of ionic systems, iNpger and Lovetf outlined the first approximation of the
some sense analogous to the role played by the hard spheggnm phase diagram, including the fluid—solid transition.
model in the study of neutral systems. It consists of & MiX-ryenty years later, Bart used density functional theory
ture of hard spheres, one-half being positively charged anghr) in the description of the freezing of the RPM model.
the other half being negatively charged. The absolute valugimylation results for the fluid—solid equilibrium of the
of the charges, as well as the particle diameters, are the samgygel were presented in 1996 by Sreftal?! and by Vega
for both species. _ _ o et al?? Each of the aforementioned studies showed that, at
A particularly interesting problem is the determination of |y, temperatures, the stable structure of the solid is the same
the global phase diagram of the RPM. The existence of ag hat of solid cesium chloride. At high temperatures the
vapor—liquid phase transition in this model was shown bygi,hle RPM solid exhibits a face centered culbéx) struc-
ture with a random allocation of cations and anions. The
dAlso at Departamento de Quica-Fsica, UCM. situation seemed clear until Bresmeeal 2% found that, at low

0021-9606/2003/119(2)/964/8/$20.00 964 © 2003 American Institute of Physics

Downloaded 20 May 2005 to 161.111.20.5. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 119, No. 2, 8 July 2003 Fluid—solid equilibrium for charged hard spheres 965

temperatures, the ions of the substitutionally disordered fcenethod as proposed by KofR&32The scheme of this paper
structure spontaneously undergo an order—disorder transs as follows: In Sec. Il we report the details of the computer
tion. Therefore, besides the CsCl and disordered fcc strucsimulations performed in this work. In Sec. Il the results of
tures, another type of solid, stable at low temperatures anthis work will be presented, and, in Sec. IV, the conclusions
high densities, is present in the RPM phase diagram. In thigill be summarized.

new phase the ions also form a fcc lattice; however, rather

than being randomly allocated they have long range substi-

tutional order. Despite the positional fcc symmetry, the symJ!l. SIMULATION DETAILS

metry of the system unit ce{bee Ref. 2Bis tetragonal when The restricted primitive model is defined as an

substitutional order is considered. Theoretical attempts to dee'quimolar-equisized mixture of anions and cations which in-
scribe this type of order—disorder transiti¢although for teract via the potential

different lattice  structurgs have been recently )
proposed?®2324 U(r)=UystUgq=Unstq/(er), ()

In a previous communication by ourselfés prelimi-  \hereuy,s is the hard sphere potentiajis the ionic charge,
nary phase diagram of the RPM was presented. In this work is the dielectric constant of the medium, aodthe hard
a number of issues raised in Ref. 23 are expgnded upon, a'%‘ﬁ‘)here diameter. In Eql) the plus and minus signs apply to
new calculation results are presented. For instance, resuligieractions between ions of the same or opposite charge
were presented in graphical form. In this paper the simulasjgn, respectively. The reduced number density of the system
tion results are provided in a tabular format to aid comparijs defined in terms ofr as, p* = pa®=(N/V) a3, with N
son with theoretical results for the fluid—solid equilibrium of peing the total number of ions filling a volumé and p the
ionic systems. As well as this a number of additional coexmumber density. Similarly, the reduced temperature is defined
istence points for the fluid—solid coexistence curve haveys T* =1/8* =kTeo/q?, with k being the Boltzmann con-

been calculated, leading to a smoother phase diagram. Howtant andT the temperature. Finally, the reduced pressure is
ever, the primary motivation for the present work is t0 p* =peg?/g2.
present the results of various calculations that complement \when working with charged systems, one is forced to
and expand upon the results of Ref. 23. In our previougarefully consider the computation of the Coulombic contri-
work, the order-disorder phase transition was obtained Vvigution to the potential energy. In this work, the Ewald sum-
NVT simulations(at constant densiiyusing a cubic unit cell. mation methotf34 is employed. In the Ewald method, the
It has been mentioned that the ordered fcc phase has tetragbulombic potential is divided into two contributions, one is
onal symmetry. Therefore, the order—disorder transitioncomputed in the real space whilst the other being calculated
which is likely to be first ordesee Ref. 2h can only be in reciprocal space. The relative importance of these contri-
located precisely when the tetragonal symmetry of the orputions is controlled by a parameter. In this work «
dered solid phase is considered in the calculations. One pos-=0.8634-. Interactions in real space were truncated atr2.9
sible route to correctly treating the tetragonal phase is to usghe reciprocal space is restricted to the vectorsuch that
an anisotropic NpT first proposed by Rahman and the modulus of the vector {§|2<27. In addition, the system
Parrinellg® and later extended to Monte Carlo simulations considered is surrounded by a conductor. It has been checked
by Yashonath and R&d.Another aspect of the previous that this set of parameters is able to correctly reproduce the
work, which is improved upon here, is the way in which the Madelung constant of the two latticé§sCl and tetragonpl
free energy of the ordered phase is evaluated. In Ref. 2@wvolved in this work.
thermodynamic integration was used to obtain the free en- For completeness, the unit cells of the solid phases are
ergy of the ordered solid phase from the free energy of thelisplayed in Fig. 1. In Fig. (), the well known cesium
fcc disordered solid. Although the thermodynamic cyclechloride structure is presented. Figuréb)lshows a disor-
showed that this procedure was consistent, rigorously speakiered fcc unit cell and Fig.(&) depicts the low temperature
ing one cannot use thermodynamic integration when crossinggtragonal solid structure. These structures will be denoted
a first order phase transitidnotice however that the density more succinctly as CsCl, fcc disordered, and tetragonal struc-
jump between the ordered and disordered solid is very smatlre, respectively. Notice that the tetragonal structure can be
indicating that the transition is only weakly first orgem  obtained from the replication of two fcc unit cells along the
order to check the validity of the thermodynamic integrationc direction. At close packingp* =(2)], each ion has 12
approximation, an alternative method of computing the fregons at a distance= o; out of these 12 nearest neighbors, 8
energy of the ordered solid would be of interest. For thathave a charge with opposite sign to that of the central ion,
purpose, the free energy of the substitutionally ordered soliédnd 4 have the same charge sign. In these conditions; the
can be calculated wusing the Einstein crystalaxis length is simply double that of tteeandb axes(thec
methodology®—3° axis, as usual, is taken to be along the direction that breaks
In summary, this work intends to provide a detailed viewthe cubic symmetry of the cellAt densities below that of
of the phase diagram of the RPM model, rigorously treatingclose packing, the tetragonal symmetry of the system is re-
the ordered solid phase by using anisotroipT simula-  flected in the axes lengths, i.@=b butc/(2a)# 1. This is
tions and determining its free energy using Einstein crystabecause, for densities smaller than that of close packing, the
calculations. To obtain smooth fluid—solid and solid—solidions with opposite charge sign tend to be closer to a given
coexistence curves we use the Gibbs—Duhem integratioion than those with the same charge sign. Given this one
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FIG. 1. Solid structures considered in this work)
CsCl like unit cell;(b) disordered fcc structurgnade of
substitutionally disordered ions on a fcc strucjute) a
tetragonal unit cell which correspond to a substitution-
ally ordered fcc lattice. The space group of the unit cell

is tetragonal 4m2.

expects the ratia/(2a)=1. The ratio of the cell parameters, another, the equilibration phase only includes between 5000
c/(2a), can be used as a measure of the departure frorand 10000 cycles from the configuration of the previous

cubic symmetry. integration step.
For CsCl, 250 ions are used while the sample size is 256
A. Gibbs—Duhem simulations for all the other phasedluid, CsCl, disordered fcc solid, and

The Gibbs—Duhem integration technique, first proposedetragonal solig When implementing the Gibbs—Duhem in-
by Kofke®32 has been used to obtain the complete coexist{€gration, we used anisotropipT for the tetragonal solid

ence curve between two phases. The Clapeyron equation, and isotropidNpT for each of the other phas&sOnly trans-
lational moves are attempted for the CsCl and tetragonal

(%) _ Ah ()  Structures in the Gibbs—Duhem simulations. For the fluid and
dT) TAv’ fcc disordered solids, in addition to translational moves, ex-
can be written as change moves were also included. In an exchange move, a
cation and an anion of the system swap their respective po-
(d Inp\ ~Ah (3  sitions. The fraction of translational moves is typically 0.8
dg* 3*PAy’ and the remaining 0.2 are exchange moves. The Gibbs—

whereAh andAv are the enthalpy and volume changes perPUnem simulations were performed on a dual processor
particle between both phases. In order to solve @y a computer having AMD Athlon XP 1806 processors and

fourth order Runge—Kutta proceddfehas been imple- using OpenMP parallel directives. A Gibbs—Duhem integra-
mented. A different number of cycles were used in the initialtion with 15 different temperatures typically consumes
and final steps of the Runge—Kutta from the intermediatéround one week of CPU. The integration of the Clapeyron
steps. Long runs were usébetween 125000 and 200 000 equation requires an initial coexistence point. For the fluid-
cycles for the initial and final steps in order to determine fce disordered and fluid-CsCl we used the coexistence points
coexistence densities and enthalpies accurately for each néi@m Ref. 22. Namely, for the fluid-fcc disordered solid we
temperature considered. However, somewhat shorter rursedT*=0.5, p* =5.64 as the initial coexistence point. For
(35000 cycles were used for the intermediate steps of thethe fluid-CsCl we used ™ =0.20, p*=1.91 as the initial
Runge—Kutta procedure since they were used only to esticoexistence point. In order to trace the CsCl-tetragonal co-
mate the coexistence pressure for the new temperature coexistence line an initial coexistence point is needed. For that
sidered. One cycle consists of a trial move per molecule plupurpose free energy calculations were undertaken for both
an attempt to change the volume of the system. Given thatolid structures alT* =0.10 (see details in the next subsec-
the points in the Runge—Kautta integration are close one tdion). After performingN pT simulations for both solid struc-
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TABLE I. Free energy calculations of the RPM model. For the CsCl struc-effect on the free energy of a small distortion of the “ideal”

; ) } 5 g ) )
ture the maximum value of the trans]atlonal spring \/MaleOO(kT)/a' - Tie., c/(2a)=1] unit cell. As can be seen in Table I, the
For the tetragonal structure the maximum value of the translational sprin

was \ = 2500KT)/o2. Ten values ofs were used in the Einstein crystal instein crystal calculations are fully consistent with the re-

calculations. Values labeled as Srettal. were taken from Ref. 21. sults from theNpT simulations since the Helmholtz free
energy of the system presents a minimum at constant density
Phase T+ P AI(NKT) Source for a ratio ofc/(2a) between 1.01 and 1.02. Thus, both the
csCl 0.05 1.00 —~11.06(2)  This work free energy calculations and thip T anisotropic simulations
CsCl 0.05 1.00 —11.05(2)  Smitet al. show that, for the selected state, the equilibrium cell of the
CsCl 0.10 1.00 —313(2)  Thiswork  tetragonal structure has a ratit(2a) slightly different from
CsCl 0.10 1.00 —3.09(1)  Smitet al.

Tetragonal 010 1.20(2a)=1) _073(2) Thiswork  °N€: Results of Table | allow one to determine the free en-

Tetragonal 010 1.20((2a)=1.01) —075(2)  This work ergy of the ordered solid phases considered in this work. In

Tetragonal  0.10  1.20c((2a)=1.02) —0.74(2)  This work order to determine the complete phase diagram, the free en-
ergies of the fcc disordered solid phase are also required. In
Ref. 23 thermodynamic integration was us@dong iso-

tures it was possible to locate the CsCl-tetragonal coexis chores to obtain the free energy of the disordered fcc solid,

ence point forT* =0.10 atp* =1.66. This was used as the AL AL g* dg*
initial coexistence point of our Gibbs—Duhem integration. In m-(P B%)= m-(P B*=0)+ fo NKT B*
summary three initial states were taken for the fluid-fcc dis- (4

ordered solid, fluid-CsCl, and CsCl-tetragonal coexistence . _ _

curves and Gibbs—Duhem simulations were performed t&Of T== (8*=0) the RPM model becomes identical to the

complete the phase diagram of the model. hard sphere system except for the presence of an entropy of
mixing, NkIn(2). The free energy of the solid hard sphere

system at any point can be obtained from the free energy
For the calculation of the free energies of the solidcalculations of the hard sphere solid of Frenkel and Ladd and

phases the Einstein-crystal methodof@g§° is used. The the EOS of the hard sphere solid of HfllUsing this pro-

implementation used here is similar to that described in precedure for the RPM we obtain at* =0.5 andp* =1.20,

vious works”~*%in which the reader should refer to for fur- A/(NkT)=5.28+0.03. The free energy for this thermody-

ther details. Translational springforcing the atoms to vi- namic state can be obtained via a second thermodynamic

brate around the equilibrium lattice positjcare used, with a  route. Starting from the value of the free energy of the te-

maximum value of\ n.,=1000 (in units of kT/c?) for the  tragonal structure al*=0.10 andp*=1.20 reported in

CsCl structure and ,,,=2500 for the tetragonal structure. Table I, thermodynamic integratids given by Eq(4)] is

Ten different values ol have been selected from=0 to  used to compute the free energy of the fcc disordered solid

A=\max t0 perform a Gauss—Legendre integration as destructure. Using this second procedure we ob#i(NkT)

scribed in Ref. 28. For the free energy calculations, 30 000=5.24+0.03. This second thermodynamic integration is

cycles are generated in the equilibration phase followed by @nly approximate since it crosses the weakly first order

further 30 000 cycles to obtain thermodynamic averages. tetragonal-fcc phase transition. Even so, the estimates of the
Since the CsCl structure has cubic symmetry, a knowlfree energy of the fcc disordered structure using these two

edge of its density is sufficient in order to determine the unitmethods agree to within statistical error.

cell parameter. However, this is no longer true for the tetrag-

onal structure for which there are two cell parameters, for

instance,a and the rat|(1:/(2a) For a given denSity, there IIl. RESULTS AND DISCUSSION

remains one independent parameter. This independent pa-

rameter has been chosen to bK2a). The free energy The CsCl and fcc disordered phases present cubic sym-

changes witlt/(2a), but, in free energy calculations the cell metry. The fluid phase is isotropic. Therefore each of these

must have a fixed geometfthe ratioc/(2a) of the equilib-  phases can be described correctly either by isotribpd or

rium unit cell should be usedThe equilibrium unit cell may by NVT simulations. This means that our previoNs/T

be obtained by performing anisotrogigp T simulations and  simulations of fluid, CsCl and fcc disordered phases as re-

determining the average value ©f(2a) at the desired den- ported in Ref. 22 are still valid and corretotice however

sity. It turns out that the anisotropNpT simulations yield, that a misprint occurred in Table VIII our previous wifk

for T* =0.10 andp* =1.20, an equilibrium value af/(2a) However, for the tetragonal solid structure anisotrdgicT

between 1.01 and 1.02. simulations were use(hlthough the condition that the axes
In Table | the results of the free energy calculations forof the simulation box are orthogonal was imposéd Table

the CsCl and the tetragonal systems are presented. In addi- simulation results for the tetragonal structure &t

tion, the results from Smiet al?! for the CsCl structure are =0.10 are presented. These results were used to determine

included. Our free energy calculations for the CsCl structurehe CsCl-tetragonal transition far* =0.10.

agree, to within statistical uncertainties, with those of Smit  The results of the Gibbs—Duhem simulations for the dif-

et al?! For the tetragonal structure free energy calculationderent coexistence lines considered in this weftkid-CsCl,

were performed forc/(2a)=1.00, 1.01, and 1.02. These CsCl-tetragonal, fluid-fcc disorderedre presented in Table

three values oft/(2a) were used in order to analyze the lll. The starting point of the Gibbs—Duhem integration is

B. Einstein crystal calculations
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TABLE II. Simulation results for the tetragonal structure as obtained from T T T T T T
anisotropic NpT simulations. The simulations were performed &t 10 k J
=0.10 with runs of 200000 cycles. Presented results correspond to the N I
equilibrium density, and residual internal energy. A A
A A
p* p* U/(NK) a i
3.0 1.2573 —0.7901 . 1t Fluid AA 2 Disordered fcc
2.7 1.2453 —0.7874 = a &
: : : Lttt 7o g9, Tetragonal
2.0 1.1967 —0.7791 01 L + 7 7 EON ®
18 1.1777 ~0.7741 ' Lt o cscl 96 %o
1.6 1.1605 ~0.7709 N % > %
+ +
+ +
0.6 07 0.8 09 1 141 12 1.3
P

labeled with an asterisk. Figure 2 displays the phase diagran:
in the T—p plane. Several interesting features emerge fromkic. 2. The phase diagram of the RPM in tlié—p* plane (log-linear

this plot. The first deals with the fluid-CsClI coexistence line.plot. Different symbols are used for each coexistence line; their meaning
In our previous work we noticed that, at low temperatures can be_ be easily traced from the ph_ases they de(’mi_t SO ob\_/ious for the

the density of the CsCl solid at coexistence with the ﬂuid’ﬂlled circles which represent the fluid-tetragonal solid coexistence.data
increases as the temperature decreases. The Gibbs—Duhem

simulations of this work again confirm this point for tem-

peraturesT* <0.05. As a consequence, the RPM exhibits ansolid coexistence are essentially temperature independent.
extremely large volume change upon melting, especially aThis has been observed in previous simulatitfrfsTwo the-

low temperatures. FOF* >0.05, the usual behavior is recov- oretical treatments, namely, the cell approximatfaand the
ered and the CsCl coexistence density increases with tendlensity functional theo) have also suggested that this is
perature. The second interesting remark is that the fcindeed so. Further on in this paper we shall discuss this point
disordered-tetragonal transition line at low densities closelyn more detail.

approaches the fluid-CsCl-tetragonal triple point. Finally, it  In Fig. 3 thep—T representation of the phase diagram of
is to be stressed that the densities of the fluid-disorderethe RPM model is shown. The extrapolation of the fluid-

TABLE Ill. Results from Gibbs—Duhem integration obtained in this work. The initial points of the Gibbs—Duhem integration are labeled with &n asteris

™ p* i P ™ p* P P
CsCl-Tetragonal Fluid-CsCl
0.0450 1.3054 1.1876 1.2631 0.0300 0.0271 0.6650 0.9418
0.0500 1.3310 1.1811 1.2540 0.0350 0.0495 0.6821 0.9027
0.0600 1.3970 1.1617 1.2341 0.0400 0.0737 0.6950 0.8819
0.0700 1.4563 1.1485 1.2111 0.0450 0.0994 0.6989 0.8805
0.0800 1.5370 1.1341 1.1950 0.0500 0.1276 0.7045 0.8767
0.0900 1.6054 1.1170 1.1736 0.0575 0.1749 0.7336 0.8735
0.1000 1.6600 1.1082 1.1668 0.0650 0.2260 0.7416 0.8795
0.1250 1.8344 1.0791 1.1351 0.0800 0.3458 0.7790 0.8948
0.1500 1.9854 1.0641 1.1020 0.1000 0.5328 0.8076 0.9086
0.1750 2.1198 1.0410 1.0868 0.1250 0.8230 0.8447 0.9298
0.2000 2.2816 1.0251 1.0698 0.1500 1.1545 0.8737 0.9539
0.2250 2.4294 1.0143 1.0493 0.1750 1.5154 0.8962 0.9770
0.2000 1.9100 0.9112 0.9903
0.2250 2.3248 0.9273 1.0088

Fluid-fcc disordered

0.273 3.036 0.9396 1.0420 Fluid-Tetragonal

0.300 3.348 0.9397 1.0409 0.2340 2.4840 0.9277 1.0401
0.333 3.731 0.9428 1.0460 0.2500 2.7088 0.9392 1.0440
0.400 4.494 0.9424 1.0370
0.500° 5.640 0.9402 1.0391

0.667 7.552 0.9348 1.0382

1.000 11.382 0.9397 1.0415

1.500 17.132 0.9370 1.0391

2.000 22.882 0.9383 1.0380

3.000 34.390 0.9410 1.0333

4.000 45.895 0.9378 1.0387

6.000 68.909 0.9368 1.0333

8.000 91.917 0.9401 1.0394
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100 T T = TABLE IV. Zero pressure densities of the fluid phase obtained fhopT
A simulations at zero pressure.
Disordered fcc a
8l A T* p*
10 | Tetragonal A8 E
S 0.020 0.675
& 0.022 0.635
. 00 000 Ojﬁ . 0.024 0.595
o 1F + ' j "UDisord. 4| 3 0.026 0.556
CsCl + Tetragonal B a 0.028 0.510
+ 3r o a
+ . 0.030 0.488
+ o 9°*
01 ¢ & 2L o 4 Fluid E
+ CsCl +
+ 1 + ) ' ' . . .
015 02 025 03 obtain T* =0.0227. This value agrees very well with that
0.01 0.1 1 10 obtained in our previous work. An alternative approach to
™ calculating this triple point is to locate the point where the

FIG. 3. The phase diagram of the RPM in th&—T* plane. Notice the  density of the liquid at coexistence with its vapor becomes
logarithmic scale of the main plot. The inset is a linear plot of the centraligentical to that of the fluid in the fluid-CsCl coexistence
gln showng I exstence of i iferent il sarts each o curve. The vapor—liquid eqilrium of the RPM at the low
Fig. 2. temperatures considered in this work is unknown. However,
a fair estimate of the fluid densities along the vapor—liquid
coexistence curve can be obtained by performing zero pres
CsCl coexistence line to zero pressure provides an estimatgire NpT runs. Results of the zero pressure runs for the
of the vapor-liquid—CsCl triple point temperatutee vapor liquid phase are presented in Table IV and are depicted in
pressures at the vapor—liquid—solid triple point are expectegig. 4(b). It should be mentioned that the zero pressure den-
to be very smajl From the extrapolatiofsee Fig. 4a)] we  sities reported in Table IV are somewhat lower than those
reported previously by ourselves in Ref. 22. The origin of the
discrepancy is the fact that for such low temperatures very

04 long runs are required in order to obtain fully equilibrated
035 | 8 samples and good average values. Results reported in Table
IV were obtained by using runs of 400 000 cycles after pre-
03 - . . - .
viously performing 200 000 equilibration cycles. In our pre-
025 | ] vious work? we used much shorter runs (10000
. +10000 cycles) and it is now clear that those runs were too
2 02 _ )
short to yield good averages for such low temperatures. The
015 | . new data points reported in Table IV agree with recent cal-
o1 L | culations of the liquid coexistence density at the triple point
' temperature performed independently by one of the
0.05 | . authorst?*3Incidentally, it should be mentioned that the cor-
. , , . . , , relation formula proposed by Gill4hfor the zero pressure
002 003 004 005 006 007 008 009 densities at low temperatures yields a satisfactory agreement
@ ™ with our new simulation results. Using this procedure, the
018 : . . : . : : . estimate for the vapor—liquid—CsCl triple point i§*
A =0.0220 andp* =0.635. The uncertainty in the calculation
0.16 + i of coexistence densities is higher than for press(ses, for
0.14 ¢ P instance, the noise in the points shown in Figs. 2 apd 3
012 | A Thus, our final estimate of the vapor—liquid—CsCl triple
point temperature should be closer Td =0.0227 than to
‘e 017 A | T*=0.0220. A reasonable value ®f =0.0225 is in perfect
0.08 A . agreement with our previous estim&teand close to the
0.06 | e ] value reported by of Smitt al*

An interesting feature shown in Fig. 3 is that the slope of
004t o | the CsCl-tetragonal solid coexistence line is positive and
0.02 o . small compared to the other coexistence lines. This can be

0 et . . . . . understood by rewriting the Clapeyron equation as
045 05 055 06 065 07 075 08 08 09
(b) p dp/dT=AU/(TAv)+p/T, 5)

FIG. 4. Extrapolations for the calculation of the vapor-liquid—CsCl triple \whereAU is the change in internal energy at the transition.
point. (a) Fit to a second order polynomial of the fluid-CsCl coexistence line P—— . - .

in the p*—T* plane; (b) fit to a third order polynomial of the fluid-CsCl The second term on the ”ght hand side is 3'Ways p03|t_|ve.
coexistence line in thad* —p* plane and its cross witNipT results of the ~ HOwever, the sign of the first term on the right-hand side

liquid at zero pressure. depends on the particular transition considered. For most of
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FIG. 5. NpT simulation results for the isotherm* =0.26. Runs were
started with the tetragonal solid at high pressypreles which transforms
into the disordered fcc phasgiangles at p* = 3.9 and finally melts into the
isotropic fluid (squaresat p* =2.6. Open symbols correspond to the inter-
nal energy, and filled symbols to the equilibrum density.

FIG. 6. Global phase diagram of the RPM in fit—p* plane. The vapor—
liguid equilibrium results were taken from Orkoulas and Panagiotopoulos
(see Ref. V.

high pressures and then the pressure was slowly decreased.
Exchange moves were also included in these simulations.

the transitions in this workwith the exception of the CsCl- Two phase transitions are clearly visible: the tetragonal-
tetragonal soligl it turns out that, when going from the low disordered fcc transition—with a very small density jump
density to the high density phagso thatAv is negative, and a clear energy change that allows to locate the order—
AU is also negativdi.e., the high dense phase has a lowerdisorder transition—and the disordered fcc-fluid transition
internal energy, hence, the first term on the right-hand side With a very small energy jump and a clear density change. As
is positive, which yields a large slope on theT plane. For ~can be seen, at the same pressure, the fluid and the fcc dis-
the CsCl-tetragonal transitiahv is also negative buhU is  ordered solid phases have almost identical internal energies.
positive, thus the first term on the right-hand side is negativd his means that the approximatiahU=0 for the fluid-
and partially cancels out the positive contribution of i@  disordered fcc transition is a very good one. A final conse-
term. This explains the small slope found in Fig. 3 for thequence of the approximation is that the transition entropy,
CsCl-tetragonal phase transition. AS, should also be constant. This is obtained by writing
The fluid-disordered solid pressures along the coexistAS=(AU+pAv)/T~pAv/T. Since Av and p/T are al-
ence line fall on an straight line for an enormous range ofnost constant and change little with temperature along the
temperaturessee Fig. 3 In other words, for this transition coexistence fluid-disordered fcc line the same must also be
the slope of th@g—T coexistence line is essentially constant. true forAS.
This is certainly striking, but can be explained if one as-  All coexistence lines seem to cross at a temperature
sumes that\U is close to zero for the fluid-fcc disordered close toT* =0.25. The inset in Fig. 3 shows this region in
transition. We shall see that this is indeed a very good apmore detail. Extrapolations of the corresponding coexistence

proximation. In such a case E(5) can be rewritten as lines indicate that the fluid-CsCl-tetragonal triple point oc-
curs atT* =0.234,p* =2.48. This point is very close to the

dp/p=dT/T 6) fluid, fcc disordered and tetragonal solid phases triple point
which can be integrated to yield at T* =0.245, p* =2.74. The existence of these two triple
IT=C ) points means that direct coexistence between the tetragonal

and the fluid phase takes place for a very narrow temperature
which means that both the slog@/dT and the ratiqp/T in range(between 0.234 and 0.245Me have confirmed this by
Eqg. (5) should be constant. Figure 3 shows that the pointcomputing the fluid-tetragonal equilibrium fé#* =0.24. We
corresponding to the fluid-disordered solid coexistence fornhave found that the tetragonal structure melts into an isotro-
a straight line. Moreover, the data in Table Il allows one topic fluid before the tetragonal-disordered fcc transition oc-
calculate the ratip*/T*. This ratio changes from 11.2 at curs, providing further evidence of the direct coexistence be-
T*=0.30 to 11.5 aff*=8. At T* == the freezing of hard tween the tetragonal structure and the fluid. Nevertheless, the
spheres is recovered; havip§/T* =11.4. It is clear that the tetragonal-fcc disordered transition may show some system
simulation results are indeed compatible with the assumptiosize dependence. This fact and the intrinsic statistical error of
that AU is close to zero. This provides an indirect evidencethe simulation may somewhat compromise the existence of
of the fulfillment of the assumption, but is it possible to this equilibrium, given the narrow range of temperatures
provide more direct evidence? Figure 5 presésT simu-  where both phases coexist.

lation results as obtained in this work for =0.26. Results In summary three triple points are found for the RPM, a
for the residual internal energy and for the EOS are alswapor-liquid—CsCl solid triple point, a fluid-CsCl-tetragonal
presented. Runs were started from the tetragonal structure tiple point and, finally, a fluid-fcc disordered-tetragonal
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