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The fluid–solid equilibrium for a charged hard sphere model revisited
Carlos Vega, José L. F. Abascal, and Carl McBride
Departamento de Quı´mica-Fı́sica, Facultad de Ciencias Quı´micas, Universidad Complutense de Madrid,
E-28040 Madrid, Spain

Fernando Bresmea)
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The global phase diagram of a system of charged hard spheres, composed of positive and negative
ions of the same size, is obtained by means of computer simulations. Thermodynamic integration
and Einstein crystal calculations are used to determine the free energies of the different possible
solid structures. In this way, the fluid–solid and solid–solid phase transitions are located. Gibbs–
Duhem integration is used to trace the full coexistence curves between the different phases involved.
Three different solid structures are found to be stable for the model considered; namely, a cesium
chloride structure~CsCl!, a substitutionally disordered close packed structure which is faced
centered cubic~fcc!, and a tetragonal ordered structure with a fcc arrangement of atoms if the charge
of the ions is not considered. At high temperatures, freezing leads to the substitutionally disordered
close packed structure. This solid structure undergoes an order–disorder transition at low
temperatures transforming into the tetragonal solid. At low temperatures freezing leads to the cesium
chloride structure~CsCl! which undergoes a phase transition to the tetragonal structure at high
pressures. The tetragonal solid is the stable solid phase at low temperatures and high densities. In a
narrow range of temperatures direct coexistence between the fluid and the tetragonal solid is
observed. Three triple points are found for the model considered. The usual vapor–liquid–CsCl
solid triple point occurs atT* 50.0225. In addition, a fluid-fcc disordered-tetragonal triple point is
located atT* 50.245 and, finally, a fluid-CsCl-tetragonal triple point appears atT* 50.234. The
results presented here can be used to test the performance of the different theoretical treatments of
freezing available in the literature. ©2003 American Institute of Physics.
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I. INTRODUCTION

The structure of molecular fluids at high densities
dominated by repulsive forces.1,2 Hence, the study of model
having only repulsive interactions, for instance hard bod
is of great importance. In the case of ionic systems the st
ture is determined simultaneously by short range repuls
forces and by long range coulombic interactions. For t
reason, the study of a hard ionic system may be of g
value in improving our understanding of ionic systems
general. This paper is devoted to one of the simplest h
ionic models; a charged hard sphere system usually kn
as the restricted primitive model~RPM!. The RPM has
played a fundamental role in the study of ionic systems
some sense analogous to the role played by the hard sp
model in the study of neutral systems. It consists of a m
ture of hard spheres, one-half being positively charged
the other half being negatively charged. The absolute va
of the charges, as well as the particle diameters, are the s
for both species.

A particularly interesting problem is the determination
the global phase diagram of the RPM. The existence o
vapor–liquid phase transition in this model was shown

a!Also at Departamento de Quı´mica-Fı́sica, UCM.
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Vorontsov-Vel’yaminov and Chasovskikh by means
Monte Carlo computer simulations.3,4 Stell et al.,5 by means
of theory, also predicted the existence of a vapor–liq
equilibrium. Recent computer simulations6–11 have now es-
tablished definitively the existence of the vapor–liquid eq
librium for the restricted primitive model and the location
the critical point. Also, very recently results of the liquid
vapor surface tension of the RPM have been published12,13

which show excellent agreement with experimental res
for ionic salts. The nature of the critical point of ionic fluid
has also been the focus of a number of studies.14–18 The
study of the fluid–solid equilibrium of the model has, how
ever, received comparatively less attention. In 1968, S
inger and Lovett19 outlined the first approximation of the
RPM phase diagram, including the fluid–solid transitio
Twenty years later, Barrat20 used density functional theor
~DFT! in the description of the freezing of the RPM mode
Simulation results for the fluid–solid equilibrium of th
model were presented in 1996 by Smitet al.21 and by Vega
et al.22 Each of the aforementioned studies showed that
low temperatures, the stable structure of the solid is the s
as that of solid cesium chloride. At high temperatures
stable RPM solid exhibits a face centered cubic~fcc! struc-
ture with a random allocation of cations and anions. T
situation seemed clear until Bresmeet al.23 found that, at low
© 2003 American Institute of Physics
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temperatures, the ions of the substitutionally disordered
structure spontaneously undergo an order–disorder tra
tion. Therefore, besides the CsCl and disordered fcc st
tures, another type of solid, stable at low temperatures
high densities, is present in the RPM phase diagram. In
new phase the ions also form a fcc lattice; however, rat
than being randomly allocated they have long range sub
tutional order. Despite the positional fcc symmetry, the sy
metry of the system unit cell~see Ref. 23! is tetragonal when
substitutional order is considered. Theoretical attempts to
scribe this type of order–disorder transition~although for
different lattice structures! have been recently
proposed.18,23,24

In a previous communication by ourselves23 a prelimi-
nary phase diagram of the RPM was presented. In this w
a number of issues raised in Ref. 23 are expanded upon
new calculation results are presented. For instance, re
were presented in graphical form. In this paper the simu
tion results are provided in a tabular format to aid compa
son with theoretical results for the fluid–solid equilibrium
ionic systems. As well as this a number of additional co
istence points for the fluid–solid coexistence curve ha
been calculated, leading to a smoother phase diagram. H
ever, the primary motivation for the present work is
present the results of various calculations that complem
and expand upon the results of Ref. 23. In our previo
work, the order-disorder phase transition was obtained
NVT simulations~at constant density! using a cubic unit cell.
It has been mentioned that the ordered fcc phase has te
onal symmetry. Therefore, the order–disorder transiti
which is likely to be first order~see Ref. 25!, can only be
located precisely when the tetragonal symmetry of the
dered solid phase is considered in the calculations. One
sible route to correctly treating the tetragonal phase is to
an anisotropic NpT first proposed by Rahman an
Parrinello26 and later extended to Monte Carlo simulatio
by Yashonath and Rao.27 Another aspect of the previou
work, which is improved upon here, is the way in which t
free energy of the ordered phase is evaluated. In Ref
thermodynamic integration was used to obtain the free
ergy of the ordered solid phase from the free energy of
fcc disordered solid. Although the thermodynamic cyc
showed that this procedure was consistent, rigorously sp
ing one cannot use thermodynamic integration when cros
a first order phase transition~notice however that the densit
jump between the ordered and disordered solid is very sm
indicating that the transition is only weakly first order!. In
order to check the validity of the thermodynamic integrati
approximation, an alternative method of computing the f
energy of the ordered solid would be of interest. For t
purpose, the free energy of the substitutionally ordered s
can be calculated using the Einstein crys
methodology.28–30

In summary, this work intends to provide a detailed vie
of the phase diagram of the RPM model, rigorously treat
the ordered solid phase by using anisotropicNpT simula-
tions and determining its free energy using Einstein cry
calculations. To obtain smooth fluid–solid and solid–so
coexistence curves we use the Gibbs–Duhem integra
Downloaded 20 May 2005 to 161.111.20.5. Redistribution subject to AIP
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method as proposed by Kofke.31,32The scheme of this pape
is as follows: In Sec. II we report the details of the compu
simulations performed in this work. In Sec. III the results
this work will be presented, and, in Sec. IV, the conclusio
will be summarized.

II. SIMULATION DETAILS

The restricted primitive model is defined as a
equimolar-equisized mixture of anions and cations which
teract via the potential

u~r !5uHS1uqq5uHS6q2/~er !, ~1!

whereuHS is the hard sphere potential,q is the ionic charge,
e is the dielectric constant of the medium, ands the hard
sphere diameter. In Eq.~1! the plus and minus signs apply t
interactions between ions of the same or opposite cha
sign, respectively. The reduced number density of the sys
is defined in terms ofs as, r* 5rs35(N/V)s3, with N
being the total number of ions filling a volumeV andr the
number density. Similarly, the reduced temperature is defi
as T* 51/b* 5kTes/q2, with k being the Boltzmann con
stant andT the temperature. Finally, the reduced pressure
p* 5pes4/q2.

When working with charged systems, one is forced
carefully consider the computation of the Coulombic con
bution to the potential energy. In this work, the Ewald su
mation method33,34 is employed. In the Ewald method, th
coulombic potential is divided into two contributions, one
computed in the real space whilst the other being calcula
in reciprocal space. The relative importance of these con
butions is controlled by a parametera. In this work a
50.863/s. Interactions in real space were truncated at 2.s.
The reciprocal space is restricted to the vectorsh such that
the modulus of the vector isuhu2,27. In addition, the system
considered is surrounded by a conductor. It has been che
that this set of parameters is able to correctly reproduce
Madelung constant of the two lattices~CsCl and tetragonal!
involved in this work.

For completeness, the unit cells of the solid phases
displayed in Fig. 1. In Fig. 1~a!, the well known cesium
chloride structure is presented. Figure 1~b! shows a disor-
dered fcc unit cell and Fig. 1~c! depicts the low temperatur
tetragonal solid structure. These structures will be deno
more succinctly as CsCl, fcc disordered, and tetragonal st
ture, respectively. Notice that the tetragonal structure can
obtained from the replication of two fcc unit cells along th
c direction. At close packing@r* 5A(2)#, each ion has 12
ions at a distancer 5s; out of these 12 nearest neighbors,
have a charge with opposite sign to that of the central i
and 4 have the same charge sign. In these conditions, tc
axis length is simply double that of thea andb axes~the c
axis, as usual, is taken to be along the direction that bre
the cubic symmetry of the cell!. At densities below that of
close packing, the tetragonal symmetry of the system is
flected in the axes lengths, i.e.,a5b but c/(2a)Þ1. This is
because, for densities smaller than that of close packing,
ions with opposite charge sign tend to be closer to a gi
ion than those with the same charge sign. Given this
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 1. Solid structures considered in this work.~a!
CsCl like unit cell;~b! disordered fcc structure~made of
substitutionally disordered ions on a fcc structure!; ~c! a
tetragonal unit cell which correspond to a substitutio
ally ordered fcc lattice. The space group of the unit c

is tetragonalI 4̄m2.
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expects the ratioc/(2a)>1. The ratio of the cell parameter
c/(2a), can be used as a measure of the departure f
cubic symmetry.

A. Gibbs–Duhem simulations

The Gibbs–Duhem integration technique, first propos
by Kofke31,32 has been used to obtain the complete coex
ence curve between two phases. The Clapeyron equatio

S dp

dTD5
Dh

TDv
, ~2!

can be written as

S d ln p

db* D52
Dh

3* PDv
, ~3!

whereDh andDv are the enthalpy and volume changes p
particle between both phases. In order to solve Eq.~3!, a
fourth order Runge–Kutta procedure35 has been imple-
mented. A different number of cycles were used in the ini
and final steps of the Runge–Kutta from the intermedi
steps. Long runs were used~between 125 000 and 200 00
cycles! for the initial and final steps in order to determin
coexistence densities and enthalpies accurately for each
temperature considered. However, somewhat shorter
~35 000 cycles! were used for the intermediate steps of t
Runge–Kutta procedure since they were used only to e
mate the coexistence pressure for the new temperature
sidered. One cycle consists of a trial move per molecule p
an attempt to change the volume of the system. Given
the points in the Runge–Kutta integration are close one
Downloaded 20 May 2005 to 161.111.20.5. Redistribution subject to AIP
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another, the equilibration phase only includes between 5
and 10 000 cycles from the configuration of the previo
integration step.

For CsCl, 250 ions are used while the sample size is
for all the other phases~fluid, CsCl, disordered fcc solid, an
tetragonal solid!. When implementing the Gibbs–Duhem in
tegration, we used anisotropicNpT for the tetragonal solid
and isotropicNpT for each of the other phases.36 Only trans-
lational moves are attempted for the CsCl and tetrago
structures in the Gibbs–Duhem simulations. For the fluid a
fcc disordered solids, in addition to translational moves,
change moves were also included. In an exchange mov
cation and an anion of the system swap their respective
sitions. The fraction of translational moves is typically 0
and the remaining 0.2 are exchange moves. The Gib
Duhem simulations were performed on a dual proces
computer having AMD Athlon XP 18001 processors and
using OpenMP parallel directives. A Gibbs–Duhem integ
tion with 15 different temperatures typically consum
around one week of CPU. The integration of the Clapey
equation requires an initial coexistence point. For the flu
fcc disordered and fluid-CsCl we used the coexistence po
from Ref. 22. Namely, for the fluid-fcc disordered solid w
usedT* 50.5, p* 55.64 as the initial coexistence point. Fo
the fluid-CsCl we usedT* 50.20, p* 51.91 as the initial
coexistence point. In order to trace the CsCl-tetragonal
existence line an initial coexistence point is needed. For
purpose free energy calculations were undertaken for b
solid structures atT* 50.10 ~see details in the next subse
tion!. After performingNpT simulations for both solid struc
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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tures it was possible to locate the CsCl-tetragonal coex
ence point forT* 50.10 atp* 51.66. This was used as th
initial coexistence point of our Gibbs–Duhem integration.
summary three initial states were taken for the fluid-fcc d
ordered solid, fluid-CsCl, and CsCl-tetragonal coexiste
curves and Gibbs–Duhem simulations were performed
complete the phase diagram of the model.

B. Einstein crystal calculations

For the calculation of the free energies of the so
phases the Einstein-crystal methodology28–30 is used. The
implementation used here is similar to that described in p
vious works37–39 in which the reader should refer to for fu
ther details. Translational springs~forcing the atoms to vi-
brate around the equilibrium lattice position! are used, with a
maximum value oflmax51000 ~in units of kT/s2) for the
CsCl structure andlmax52500 for the tetragonal structure
Ten different values ofl have been selected froml50 to
l5lmax to perform a Gauss–Legendre integration as
scribed in Ref. 28. For the free energy calculations, 30 0
cycles are generated in the equilibration phase followed b
further 30 000 cycles to obtain thermodynamic averages

Since the CsCl structure has cubic symmetry, a kno
edge of its density is sufficient in order to determine the u
cell parameter. However, this is no longer true for the tetr
onal structure for which there are two cell parameters,
instance,a and the ratioc/(2a). For a given density, there
remains one independent parameter. This independent
rameter has been chosen to bec/(2a). The free energy
changes withc/(2a), but, in free energy calculations the ce
must have a fixed geometry~the ratioc/(2a) of the equilib-
rium unit cell should be used!. The equilibrium unit cell may
be obtained by performing anisotropicNpT simulations and
determining the average value ofc/(2a) at the desired den
sity. It turns out that the anisotropicNpT simulations yield,
for T* 50.10 andr* 51.20, an equilibrium value ofc/(2a)
between 1.01 and 1.02.

In Table I the results of the free energy calculations
the CsCl and the tetragonal systems are presented. In a
tion, the results from Smitet al.21 for the CsCl structure are
included. Our free energy calculations for the CsCl struct
agree, to within statistical uncertainties, with those of S
et al.21 For the tetragonal structure free energy calculatio
were performed forc/(2a)51.00, 1.01, and 1.02. Thes
three values ofc/(2a) were used in order to analyze th

TABLE I. Free energy calculations of the RPM model. For the CsCl str
ture the maximum value of the translational spring wasl51000(kT)/s2.
For the tetragonal structure the maximum value of the translational sp
was l52500(kT)/s2. Ten values ofl were used in the Einstein crysta
calculations. Values labeled as Smitet al. were taken from Ref. 21.

Phase T* r* A/(NkT) Source

CsCl 0.05 1.00 211.06(2) This work
CsCl 0.05 1.00 211.05(2) Smitet al.
CsCl 0.10 1.00 23.13(2) This work
CsCl 0.10 1.00 23.09(1) Smitet al.

Tetragonal 0.10 1.20 (c/(2a)51) 20.73(2) This work
Tetragonal 0.10 1.20 (c/(2a)51.01) 20.75(2) This work
Tetragonal 0.10 1.20 (c/(2a)51.02) 20.74(2) This work
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effect on the free energy of a small distortion of the ‘‘idea
@i.e., c/(2a)51] unit cell. As can be seen in Table I, th
Einstein crystal calculations are fully consistent with the
sults from theNpT simulations since the Helmholtz fre
energy of the system presents a minimum at constant den
for a ratio ofc/(2a) between 1.01 and 1.02. Thus, both t
free energy calculations and theNpT anisotropic simulations
show that, for the selected state, the equilibrium cell of
tetragonal structure has a ratioc/(2a) slightly different from
one. Results of Table I allow one to determine the free
ergy of the ordered solid phases considered in this work
order to determine the complete phase diagram, the free
ergies of the fcc disordered solid phase are also required
Ref. 23 thermodynamic integration was used~along iso-
chores! to obtain the free energy of the disordered fcc sol

A

NkT
~r* ,b* !5

A

NkT
~r* ,b* 50!1E

0

b* U

NkT

db*

b*
.

~4!

For T5` (b* 50) the RPM model becomes identical to th
hard sphere system except for the presence of an entrop
mixing, Nk ln(2). The free energy of the solid hard sphe
system at any point can be obtained from the free ene
calculations of the hard sphere solid of Frenkel and Ladd
the EOS of the hard sphere solid of Hall.40 Using this pro-
cedure for the RPM we obtain atT* 50.5 andr* 51.20,
A/(NkT)55.2860.03. The free energy for this thermody
namic state can be obtained via a second thermodyna
route. Starting from the value of the free energy of the
tragonal structure atT* 50.10 andr* 51.20 reported in
Table I, thermodynamic integration@as given by Eq.~4!# is
used to compute the free energy of the fcc disordered s
structure. Using this second procedure we obtainA/(NkT)
55.2460.03. This second thermodynamic integration
only approximate since it crosses the weakly first ord
tetragonal-fcc phase transition. Even so, the estimates o
free energy of the fcc disordered structure using these
methods agree to within statistical error.

III. RESULTS AND DISCUSSION

The CsCl and fcc disordered phases present cubic s
metry. The fluid phase is isotropic. Therefore each of th
phases can be described correctly either by isotropicNpT or
by NVT simulations. This means that our previousNVT
simulations of fluid, CsCl and fcc disordered phases as
ported in Ref. 22 are still valid and correct~notice however
that a misprint occurred in Table VIII our previous work!.41

However, for the tetragonal solid structure anisotropicNpT
simulations were used~although the condition that the axe
of the simulation box are orthogonal was imposed!. In Table
II simulation results for the tetragonal structure atT*
50.10 are presented. These results were used to deter
the CsCl-tetragonal transition forT* 50.10.

The results of the Gibbs–Duhem simulations for the d
ferent coexistence lines considered in this work~fluid-CsCl,
CsCl-tetragonal, fluid-fcc disordered! are presented in Table
III. The starting point of the Gibbs–Duhem integration

-

g
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968 J. Chem. Phys., Vol. 119, No. 2, 8 July 2003 Vega et al.
labeled with an asterisk. Figure 2 displays the phase diag
in the T–r plane. Several interesting features emerge fr
this plot. The first deals with the fluid-CsCl coexistence lin
In our previous work we noticed that, at low temperatur
the density of the CsCl solid at coexistence with the flu
increases as the temperature decreases. The Gibbs–D
simulations of this work again confirm this point for tem
peraturesT* ,0.05. As a consequence, the RPM exhibits
extremely large volume change upon melting, especially
low temperatures. ForT* .0.05, the usual behavior is recov
ered and the CsCl coexistence density increases with
perature. The second interesting remark is that the
disordered-tetragonal transition line at low densities clos
approaches the fluid-CsCl-tetragonal triple point. Finally
is to be stressed that the densities of the fluid-disorde

TABLE II. Simulation results for the tetragonal structure as obtained fr
anisotropic NpT simulations. The simulations were performed atT*
50.10 with runs of 200 000 cycles. Presented results correspond to
equilibrium density, and residual internal energy.

p* r* U/(Nk)

3.0 1.2573 20.7901
2.7 1.2453 20.7874
2.5 1.2287 20.7847
2.2 1.2111 20.7812
2.0 1.1967 20.7791
1.8 1.1777 20.7741
1.6 1.1605 20.7709
Downloaded 20 May 2005 to 161.111.20.5. Redistribution subject to AIP
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solid coexistence are essentially temperature independ
This has been observed in previous simulations.22,23Two the-
oretical treatments, namely, the cell approximation22 and the
density functional theory20 have also suggested that this
indeed so. Further on in this paper we shall discuss this p
in more detail.

In Fig. 3 thep–T representation of the phase diagram
the RPM model is shown. The extrapolation of the flui

FIG. 2. The phase diagram of the RPM in theT* –r* plane ~log-linear
plot!. Different symbols are used for each coexistence line; their mean
can be be easily traced from the phases they delimit~not so obvious for the
filled circles which represent the fluid-tetragonal solid coexistence data!.

he
steris
TABLE III. Results from Gibbs–Duhem integration obtained in this work. The initial points of the Gibbs–Duhem integration are labeled with an ak.

T* p* r1* r2* T* p* r1* r2*

CsCl-Tetragonal Fluid-CsCl
0.0450 1.3054 1.1876 1.2631 0.0300 0.0271 0.6650 0.9418
0.0500 1.3310 1.1811 1.2540 0.0350 0.0495 0.6821 0.9027
0.0600 1.3970 1.1617 1.2341 0.0400 0.0737 0.6950 0.8819
0.0700 1.4563 1.1485 1.2111 0.0450 0.0994 0.6989 0.8805
0.0800 1.5370 1.1341 1.1950 0.0500 0.1276 0.7045 0.8767
0.0900 1.6054 1.1170 1.1736 0.0575 0.1749 0.7336 0.8735

0.1000* 1.6600 1.1082 1.1668 0.0650 0.2260 0.7416 0.8795
0.1250 1.8344 1.0791 1.1351 0.0800 0.3458 0.7790 0.8948
0.1500 1.9854 1.0641 1.1020 0.1000 0.5328 0.8076 0.9086
0.1750 2.1198 1.0410 1.0868 0.1250 0.8230 0.8447 0.9298
0.2000 2.2816 1.0251 1.0698 0.1500 1.1545 0.8737 0.9539
0.2250 2.4294 1.0143 1.0493 0.1750 1.5154 0.8962 0.9770

0.2000* 1.9100 0.9112 0.9903
0.2250 2.3248 0.9273 1.0088

Fluid-fcc disordered

0.273 3.036 0.9396 1.0420 Fluid-Tetragonal
0.300 3.348 0.9397 1.0409 0.2340* 2.4840 0.9277 1.0401
0.333 3.731 0.9428 1.0460 0.2500 2.7088 0.9392 1.0440
0.400 4.494 0.9424 1.0370

0.500* 5.640 0.9402 1.0391
0.667 7.552 0.9348 1.0382
1.000 11.382 0.9397 1.0415
1.500 17.132 0.9370 1.0391
2.000 22.882 0.9383 1.0380
3.000 34.390 0.9410 1.0333
4.000 45.895 0.9378 1.0387
6.000 68.909 0.9368 1.0333
8.000 91.917 0.9401 1.0394
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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CsCl coexistence line to zero pressure provides an estim
of the vapor–liquid–CsCl triple point temperature~the vapor
pressures at the vapor–liquid–solid triple point are expec
to be very small!. From the extrapolation@see Fig. 4~a!# we

FIG. 3. The phase diagram of the RPM in thep* –T* plane. Notice the
logarithmic scale of the main plot. The inset is a linear plot of the cen
region showing the existence of two different triple points each involv
the fluid and two solid phases. The meaning of the symbols is the same
Fig. 2.

FIG. 4. Extrapolations for the calculation of the vapor–liquid–CsCl trip
point. ~a! Fit to a second order polynomial of the fluid-CsCl coexistence l
in the p* –T* plane; ~b! fit to a third order polynomial of the fluid-CsC
coexistence line in theT* –r* plane and its cross withNpT results of the
liquid at zero pressure.
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obtain T* 50.0227. This value agrees very well with th
obtained in our previous work. An alternative approach
calculating this triple point is to locate the point where t
density of the liquid at coexistence with its vapor becom
identical to that of the fluid in the fluid-CsCl coexistenc
curve. The vapor–liquid equilibrium of the RPM at the lo
temperatures considered in this work is unknown. Howev
a fair estimate of the fluid densities along the vapor–liqu
coexistence curve can be obtained by performing zero p
sure NpT runs. Results of the zero pressure runs for
liquid phase are presented in Table IV and are depicted
Fig. 4~b!. It should be mentioned that the zero pressure d
sities reported in Table IV are somewhat lower than tho
reported previously by ourselves in Ref. 22. The origin of t
discrepancy is the fact that for such low temperatures v
long runs are required in order to obtain fully equilibrat
samples and good average values. Results reported in T
IV were obtained by using runs of 400 000 cycles after p
viously performing 200 000 equilibration cycles. In our pr
vious work22 we used much shorter runs (10 00
110 000 cycles) and it is now clear that those runs were
short to yield good averages for such low temperatures.
new data points reported in Table IV agree with recent c
culations of the liquid coexistence density at the triple po
temperature performed independently by one of
authors.12,13Incidentally, it should be mentioned that the co
relation formula proposed by Gillan42 for the zero pressure
densities at low temperatures yields a satisfactory agreem
with our new simulation results. Using this procedure, t
estimate for the vapor–liquid–CsCl triple point isT*
50.0220 andr* 50.635. The uncertainty in the calculatio
of coexistence densities is higher than for pressures~see, for
instance, the noise in the points shown in Figs. 2 and!.
Thus, our final estimate of the vapor–liquid–CsCl trip
point temperature should be closer toT* 50.0227 than to
T* 50.0220. A reasonable value ofT* 50.0225 is in perfect
agreement with our previous estimate22 and close to the
value reported by of Smitet al.21

An interesting feature shown in Fig. 3 is that the slope
the CsCl-tetragonal solid coexistence line is positive a
small compared to the other coexistence lines. This can
understood by rewriting the Clapeyron equation as

dp/dT5DU/~TDv !1p/T, ~5!

whereDU is the change in internal energy at the transitio
The second term on the right-hand side is always posit
However, the sign of the first term on the right-hand si
depends on the particular transition considered. For mos

l

in

TABLE IV. Zero pressure densities of the fluid phase obtained fromNpT
simulations at zero pressure.

T* r*

0.020 0.675
0.022 0.635
0.024 0.595
0.026 0.556
0.028 0.510
0.030 0.488
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the transitions in this work~with the exception of the CsCl
tetragonal solid!, it turns out that, when going from the low
density to the high density phase~so thatDv is negative!,
DU is also negative~i.e., the high dense phase has a low
internal energy!; hence, the first term on the right-hand si
is positive, which yields a large slope on thep–T plane. For
the CsCl-tetragonal transitionDv is also negative butDU is
positive, thus the first term on the right-hand side is nega
and partially cancels out the positive contribution of thep/T
term. This explains the small slope found in Fig. 3 for t
CsCl-tetragonal phase transition.

The fluid-disordered solid pressures along the coex
ence line fall on an straight line for an enormous range
temperatures~see Fig. 3!. In other words, for this transition
the slope of thep–T coexistence line is essentially consta
This is certainly striking, but can be explained if one a
sumes thatDU is close to zero for the fluid-fcc disordere
transition. We shall see that this is indeed a very good
proximation. In such a case Eq.~5! can be rewritten as

dp/p5dT/T ~6!

which can be integrated to yield

p/T5C, ~7!

which means that both the slopedp/dT and the ratiop/T in
Eq. ~5! should be constant. Figure 3 shows that the po
corresponding to the fluid-disordered solid coexistence fo
a straight line. Moreover, the data in Table III allows one
calculate the ratiop* /T* . This ratio changes from 11.2 a
T* 50.30 to 11.5 atT* 58. At T* 5` the freezing of hard
spheres is recovered; havingp* /T* 511.4. It is clear that the
simulation results are indeed compatible with the assump
that DU is close to zero. This provides an indirect eviden
of the fulfillment of the assumption, but is it possible
provide more direct evidence? Figure 5 presentsNpT simu-
lation results as obtained in this work forT* 50.26. Results
for the residual internal energy and for the EOS are a
presented. Runs were started from the tetragonal structu

FIG. 5. NpT simulation results for the isothermT* 50.26. Runs were
started with the tetragonal solid at high pressures~circles! which transforms
into the disordered fcc phase~triangles! at p* 53.9 and finally melts into the
isotropic fluid ~squares! at p* 52.6. Open symbols correspond to the inte
nal energy, and filled symbols to the equilibrum density.
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high pressures and then the pressure was slowly decrea
Exchange moves were also included in these simulatio
Two phase transitions are clearly visible: the tetragon
disordered fcc transition—with a very small density jum
and a clear energy change that allows to locate the ord
disorder transition—and the disordered fcc-fluid transiti
with a very small energy jump and a clear density change
can be seen, at the same pressure, the fluid and the fcc
ordered solid phases have almost identical internal energ
This means that the approximationDU50 for the fluid-
disordered fcc transition is a very good one. A final con
quence of the approximation is that the transition entro
DS, should also be constant. This is obtained by writi
DS5(DU1pDv)/T'pDv/T. Since Dv and p/T are al-
most constant and change little with temperature along
coexistence fluid-disordered fcc line the same must also
true for DS.

All coexistence lines seem to cross at a temperat
close toT* 50.25. The inset in Fig. 3 shows this region
more detail. Extrapolations of the corresponding coexiste
lines indicate that the fluid-CsCl-tetragonal triple point o
curs atT* 50.234,p* 52.48. This point is very close to th
fluid, fcc disordered and tetragonal solid phases triple po
at T* 50.245, p* 52.74. The existence of these two trip
points means that direct coexistence between the tetrag
and the fluid phase takes place for a very narrow tempera
range~between 0.234 and 0.245!. We have confirmed this by
computing the fluid-tetragonal equilibrium forT* 50.24. We
have found that the tetragonal structure melts into an iso
pic fluid before the tetragonal-disordered fcc transition o
curs, providing further evidence of the direct coexistence
tween the tetragonal structure and the fluid. Nevertheless
tetragonal-fcc disordered transition may show some sys
size dependence. This fact and the intrinsic statistical erro
the simulation may somewhat compromise the existence
this equilibrium, given the narrow range of temperatur
where both phases coexist.

In summary three triple points are found for the RPM
vapor–liquid–CsCl solid triple point, a fluid-CsCl-tetragon
triple point and, finally, a fluid-fcc disordered-tetragon

FIG. 6. Global phase diagram of the RPM in theT* –r* plane. The vapor–
liquid equilibrium results were taken from Orkoulas and Panagiotopou
~see Ref. 7!.
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triple point. The global phase diagram of the RPM with
phases~including the vapor–liquid equilibria! is presented in
Fig. 6. It is interesting to compare the value of the trip
point temperatureTt* 50.0225 with that of the critical tem
perature for this model. For the latter, we adopt here
valueTc* 50.0489 reported by Panagiotopoulos43 and Caillol
et al.44 as the more confident estimate. The ratio of these
values isTt* /Tc* 50.46. Purely ionic systems such as Na
or CsCl present a rather lower value, havingTt* /Tc* '1/3.45

The difference between the RPM result and the experime
values for real ionic systems may be due to the disparity
the size of both ions in real substances~compared to the
RPM for which the two ions present the same radii!. Notice
also that the order–disorder transition may be severely
fected by small differences in the ionic radii. More work o
these issues is needed as to clarify the relevance of the m
to real ionic crystals.

Finally, let us mention the large change in volume wh
the CsCl phase melts at the triple point temperature.
calculations at the triple point indicate that the fraction
density change (rsolid* 2r liquid* )/rsolid* is as high as 32%.

IV. CONCLUSIONS

In this work the phase diagram of the RPM model w
considered.NpT simulations ~isotropic and anisotropic!,
Einstein crystal calculations and Gibbs–Duhem integrat
were used to determine the coexistence lines. The pic
from this work for the freezing of charged hard spheres is
follows. At high temperatures the freezing occurs into a d
ordered fcc structure, whereas at low temperatures the fr
ing occurs into the CsCl structure. At low temperatures a
high densities a tetragonal solid is found with a fcc like o
dered arrangement of ions. In a very narrow range of te
peratures the fluid freezes into the tetragonal ordered st
ture.

Coexistence densities along the fluid-fcc disordered s
equilibrium do not change much with temperature. For
fluid-CsCl solid equilibrium we found an increase in th
solid density as the temperature decreases in the neigh
hood of the triple point.

In summary three triple points are found for the RPM
vapor–liquid–CsCl solid triple pointT* 50.0225, a fluid-
CsCl-tetragonal triple pointT* 50.234, and finally a fluid-
fcc disordered-tetragonal triple pointT* 50.245.

This works presents a detailed view of the phase d
gram of what is probably the simplest model that one c
conceive for an ionic system. Since the problem of the flu
solid equilibrium of ionic system is receiving more and mo
attention46–48 a knowledge of the phase diagram may be
interest to workers in the area. This paper shows that a n
ber of interesting features are already present in suc
simple model.

ACKNOWLEDGMENT

This work was supported by Project Nos. BFM200
1420-C02-01 and BFM2001-1017-C03-02 of the Direcc´n
General de Enseanza Superior of Spain.
Downloaded 20 May 2005 to 161.111.20.5. Redistribution subject to AIP
l

e

o
l

al
n

f-

del

n
ur
l

s

n
re
s
-
z-
d
-
-
c-

id
e

or-

-
n
–

f
-
a

-

1J. A. Barker and D. Henderson, Annu. Rev. Phys. Chem.23, 439 ~1972!.
2J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys.54, 5237
~1971!.

3B. P. Chasovskikh and P. N. Vorontsov-Vel’yaminov, High Temp.13, 1071
~1975!.

4P. N. Vorontsov-Vel’yaminov and B. P. Chasovskikh, High Temp.14, 174
~1976!.

5G. Stell, K. C. Wu, and B. Larsen, Phys. Rev. Lett.37, 1369~1976!.
6G. Orkoulas and A. Z. Panagiotopoulos, Fluid Phase Equilib.93, 223
~1993!.

7G. Orkoulas and A. Z. Panagiotopoulos, J. Chem. Phys.101, 1452~1994!.
8J. M. Caillol, J. Chem. Phys.100, 2161~1994!.
9J. M. Caillol and J. J. Weis, J. Chem. Phys.102, 7610~1995!.

10J. C. Shelley and G. N. Patey, J. Chem. Phys.103, 8299~1995!.
11F. Bresme, E. Lomba, J. J. Weis, and J. L. F. Abascal, Phys. Rev. E51, 289

~1995!.
12F. Bresme and J. Alejandre, J. Chem. Phys.118, 4134~2003!.
13M. González-Melchor, J. Alejandre, and F. Bresme, Phys. Rev. Lett.~in

press!.
14D. A. McQuarrie, J. Phys. Chem.66, 1508~1962!.
15K. S. Pitzer, Chem. Phys. Lett.105, 484 ~1984!.
16M. E. Fisher, J. Stat. Phys.75, 1 ~1994!.
17M. E. Fisher, inNew Approaches to Problems in Liquid State Theo,

edited by C. Caccamo, J. P. Hansen, and G. Stell~Kluwer, Dordrecht,
1999!, pp. 3–8.

18G. Stell, inNew Approaches to Problems in Liquid State Theory, edited by
C. Caccamo, J. P. Hansen, and G. Stell~Kluwer, Dordrecht, 1999!, pp.
71–89.

19F. H. Stillinger and R. Lovett, J. Chem. Phys.54, 1086~1968!.
20J. L. Barrat, J. Phys. C20, 1031~1987!.
21B. Smit, K. Esselink, and D. Frenkel, Mol. Phys.87, 159 ~1996!.
22C. Vega, F. Bresme, and J. L. F. Abascal, Phys. Rev. E54, 2746~1996!.
23F. Bresme, C. Vega, and J. L. F. Abascal, Phys. Rev. Lett.85, 3217~2000!.
24V. Kobelev, A. B. Kolomeisky, and M. E. Fisher, J. Chem. Phys.116, 7589

~2002!.
25N. G. Almarza and E. Enciso, Phys. Rev. E64, 042501~2001!.
26M. Parrinello and A. Rahman, Phys. Rev. Lett.45, 1196~1980!.
27S. Yashonath and C. N. R. Rao, Mol. Phys.54, 245 ~1985!.
28D. Frenkel and A. J. C. Ladd, J. Chem. Phys.81, 3188~1984!.
29D. Frenkel and B. Smit,Understanding Molecular Simulations: From Al

gorithms to Applications~Academic, New York, 1996!.
30P. A. Monson and D. A. Kofke, Adv. Chem. Phys.115, 113 ~2000!.
31D. A. Kofke, Mol. Phys.78, 1331~1993!.
32D. A. Kofke, J. Chem. Phys.98, 4149~1993!.
33P. P. Ewald, Ann. Phys.~Paris! 64, 253 ~1921!.
34M. P. Allen and D. J. Tildesley,Computer Simulation of Liquids, 2nd ed.

~Clarendon, Oxford, 1987!.
35W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,Nu-

merical Recipes~Cambridge University Press, Cambridge, 1989!.
36M. Lisal, R. Budinsky, and V. Vacek, Fluid Phase Equilib.135, 193

~1997!.
37C. Vega, E. P. A. Paras, and P. A. Monson, J. Chem. Phys.96, 9060

~1992!.
38C. Vega and P. A. Monson, J. Chem. Phys.102, 1361~1995!.
39E. de Miguel and C. Vega, J. Chem. Phys.117, 6313~2002!.
40K. R. Hall, J. Chem. Phys.57, 2252~1972!.
41A misprint was found in Table VIII of Ref. 22. The value ofZ in the last

column of the first 16 rows was written incorrectly. The correct value oZ
can be easily obtained by using Eq.~3.3! of that paper and the values o
U/(NkT) andg11(s), g21(s) of Table VIII which are not affected by
the misprint.

42M. J. Gillan, Mol. Phys.49, 421 ~1983!.
43A. Z. Panagiotopoulos, J. Chem. Phys.116, 3007~2002!.
44J. M. Caillol, D. Levesque, and J. J. Weis, J. Chem. Phys.116, 10794

~2002!.
45A. R. Ubbelohde,The Molten State of Matter~Wiley, Chichester, 1978!.
46B. Guillot and Y. J. Guissani, J. Chem. Phys.116, 2047~2002!.
47M. Ferrario, G. Ciccoti, E. Spohr, T. Cartailler, and P. Turq, J. Chem. Ph

117, 4947~2002!.
48J. Anwar, D. Frenkel, and M. G. Noro, J. Chem. Phys.118, 728 ~2003!.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


